Hints for exercises, Tuesday, first hour

Mathias Winther Madsen
mathias.winther@gmail.com

January 13, 2014

Chebyshev's ineqality Use the Markov bound on the variable $(X-\mu)^{2}$.
Confidence interval You can solve an equality in $\sqrt{\mu}$ by setting $y=\sqrt{\mu}$ and then solving for y.

The region between the two bounds looks like this:

Frequentist inference

1. All of the coin flips in the sum are independent.
2. Use the Markov bound with $b=15^{2}$. You should get a bound of $1 / 9$.
3. You should end up with the answer

$$
\max _{p} \operatorname{VAR}\left[S_{100}\right]=\frac{100}{2 \cdot 2}
$$

4. Use the Markov bound, replacing $\operatorname{VAR}\left[S_{100}\right]$ by max $\operatorname{VAR}\left[S_{100}\right]$. You can also work with the correct value, $n p(1-p)$, but this makes the algebra (much) more cumbersome.
5. Solve for p. The maximum tolerated deviation should end up being $\pm \frac{\sqrt{5}}{10}$.
