ILLC Project Course in Information Theory

Crash course

13 January – 17 January 2014 12:00 to 14:00

Student presentations

27 January – 31 January 2014 12:00 to 14:00

Location

ILLC, room F1.15, Science Park 107, Amsterdam

Materials

informationtheory.weebly.com

Contact

Mathias Winther Madsen mathias.winther@gmail.com

Monday

Probability theory Uncertainty and coding

Tuesday

The weak law of large numbers The source coding theorem

Wednesday

Random processes Arithmetic coding

Thursday

Divergence Kelly Gambling

Friday

Kolmogorov Complexity The limits of statistics

Probability theory:

Propositional logic:

Probability theory:

Additivity axiom: The probabilities of disjoint sets add up

 $Pr\{w_1, w_2\} = Pr\{w_1\} + Pr\{w_2\}$ = 0.1 + 0.4= 0.5

Example: A geometric distribution

"Irrational" distributions?

Cf. plato.stanford.edu/entries/dutch-book

Random variables

Random variables

Random variables

	X = 0	X = 1	Σ		X = 0	X = 1	Σ
Y = 0	0.40	0.30	0.70	Y = 0	0.42	0.28	0.70
Y = 1	0.20	0.10	0.30	Y = 1	0.18	0.12	0.30
Σ	0.60	0.40	1.00	Σ	0.60	0.40	1.00

Dependent

Independent

X and *Y* are **independent** if Pr(X = x and Y = y) = Pr(X = x) Pr(Y = y)for all *x* and *y*.

Х	=	flip()
Y	=	flip()
Z	=	X + Z

$$X = 0, Y = 0, Z = 0$$

$$X = 0, Y = 0, Z = 0$$

$$X = 1, Y = 0, Z = 1$$

$$X = 1, Y = 0, Z = 1$$

$$X = 1, Y = 1, Z = 2$$

$$X = 1, Y = 0, Z = 1$$

$$X = 1, Y = 1, Z = 2$$

$$X = 0, Y = 0, Z = 0$$

$$X = 1, Y = 0, Z = 1$$

$$X = 1, Y = 1, Z = 2$$

$$X = 0, Y = 0, Z = 1$$

$$X = 1, Y = 1, Z = 2$$

$$X = 0, Y = 1, Z = 2$$

$$X = 1, Y = 1, Z = 1$$

$$X = 1, Y = 1, Z = 2$$

X	Y	Ζ	Pr
0	0	0	1/4
0	0	1	0
0	0	2	0
0	1	0	0
0	1	1	1/4
0	1	2	0
1	0	0	0
1	0	1	1/4
1	0	2	0
1	1	0	0
1	1	1	0
1	1	2	1/4

X =	= f	lip	()
Y =	= f	lip	()
Z =	= X	+	Z

Marginalization

	X = 0	X = 1	X = 2	Σ
	0.1			0.2
Y = 1	0.2	0.2	0.1	0.5
Y = 2	0.0	0.3	0.0	0.3
Σ	0.3	0.6	0.1	1.00

 $Pr(X = x) = \Sigma_y Pr(X = x \text{ and } Y = y)$ Shorthand: $Pr(x) = \Sigma_y Pr(x, y)$

X	Y	Ζ	Pr
0	0	0	1/4
0	0	1	0
0	0	2	0
0	1	0	0
0	1	1	1/4
0	1	2	0
1	0	0	0
1	0	1	1/4
1	0	2	0
1	1	0	0
1	1	1	0
1	1	2	1/4

$$X = flip()$$
$$Y = flip()$$
$$Z = X + Z$$

$$Pr(Z = 0) = 1/4$$

 $Pr(Z = 1) = 1/2$
 $Pr(Z = 2) = 1/4$

$$X = randint(0, 6)$$

 $Y = (X - 3)^2$

Conditional probability

13		X = 0	X = 1	X = 2	Σ
		0.1			0.2
$\left(\right)$	Y = 1	0.2	0.2	0.1	0.5
	Y = 2	0.0	0.3	0.0	0.3
	Σ	0.3	0.6	0.1	1.00

Pr(X = x and Y = y)

Conditional probability

		X = 0	X = 1	X = 2	Σ
(III)	Y = 0		0	0	0
(Y=1)	Y = 1	0.2	0.2	0.1	0.5
X×Y	Y = 2	0	0		0
	Σ	0.2	0.1	0.1	0.4

Pr(X = x and Y = 1)

Conditional probability

				X = 2	
	Y = 0	0	0	0	0
(Y=1) X	Y = 1	0.4	0.4	0.2	1.0
	Y = 2	0	0	0	0
	Σ	0.4	0.4	0.2	1.0
				and V	1 \

 $Pr(X = x | Y = 1) == \frac{Pr(X = x \text{ and } Y = 1)}{Pr(Y = 1)}$

Example: The Monty Hall Problem

Pr(X = 1) = ? $Pr(X = 1 | \neg (X = 3)) = ?$

(en.wikipedia.org/wiki/Monty_Hall_problem)

Example: A geometric distribution

Pr($T \mid E$), where T = X is divisible by 3 E = X is divisible by 2

Conditional probability: The Chain Rule

Pr(X and Y) = Pr(X | Y) Pr(Y)

Verbose form: For all *x* and *y*,

Pr(X = x and Y = y) = Pr(X = x | Y = y) Pr(Y = y)

Distributions Random variables Independence

Marginalization Conditionalization

The chain rule

Now: Exercises

Colorblindness Colorblindness is caused by a genetic defect which is present on approximately 8% of all X chromosomes. Since men only have one X chromosome, about 8% of the male population is colorblind.

- 1. Women have two X chromosomes. What percentage of the female population is colorblind? (You can check your answer against the actual figures.)
- 2. Suppose that the genetic defect occurred more frequently than 8% of the time. How common would it have to be in order for 50% of the female population to be colorblind?

Forwards and backwards prediction Consider the following two tasks:

• Guessing the next letter of a text given the preceding ones:

... re particularly impr_

• Guessing the previous letter of a text given the following ones:

_onth following the c ...

In general, which task is the more difficult — from statistical perspective, and from a cognitive? Why?

Chinese whisper The binary symmetric channel is a communication channel which transmits 0s and 1s, but occasionally outputs the wrong symbol.

Suppose we have a binary symmetric channel with error probability 0.05, and that we send the string X = 0000 through this channel. We then send the output Y back through the channel again, ending up with a third string Z.

What's the probability that X = Z?

Coin flipping You generate two sequences by flipping a coin three times. What's the probability that the two sequences are identical? What's the probability that the have the same number of heads?