ILLC Project Course in Information Theory

Crash course
13 January - 17 January 2014
12:00 to 14:00
Student presentations
27 January - 31 January 2014
12:00 to 14:00

Location

ILLC, room F1.15,
Science Park 107, Amsterdam

Materials

informationtheory.weebly.com

Contact

Mathias Winther Madsen
mathias.winther@gmail.com

Monday

Probability theory
Uncertainty and coding
Tuesday
The weak law of large numbers
The source coding theorem

Wednesday

Random processes Arithmetic coding

Thursday

Divergence
Kelly Gambling

Friday

Kolmogorov Complexity
The limits of statistics

PLAN

- Some combinatorical preliminaries
- Turing machines
- Kolmogorov complexity
- The universality of Kolmogorov complexity
- The equivalence of Kolmogorov complexity and coin flipping entropy
- Monkeys with typewriters

PLAN

- Some combinatorical preliminaries:
- Factorials
- Stirling's approximation
- Binomial coefficients
- The binary entropy approximation

There are $3 \cdot 2 \cdot 1$ ways to sort three letters:
$A B C, A C B, B A C, B C A, C A B, C B A$

Notation:

$$
n!==1 \cdot 2 \cdot 3 \cdot \ldots \cdot n
$$

or " n factorial."

The natural logarithm of a factorial can be approximated by Stirling's approximation,

$$
\ln (n!)==n \ln n-n
$$

The error of this approximation grows slower than linearly.

n	10	20	30	40	50
$\ln (n!)$	15.1	42.3	74.6	110.3	148.5
$\operatorname{Stir}(n)$	13.0	40.0	72.0	107.6	145.6

Sproof:

The anti-derivative of $\ln (x)$ is $x \ln (x)-x$.
William Feller: An Introduction to Probability Theory and its Applications (1950)

There are

$$
4 \cdot 3=\frac{4!}{2!}==\frac{24}{2}=12
$$

ways to put two objects into four boxes:

1	2	1	2	1	2	\square	\square	\square	\square	\square	\square
2	1					1	2	1	2	\square	
\square		2	1			2	1			1	2

If the objects are identical, the number of options is a factor of $2!$ smaller:

$$
\frac{4!}{2!2!}==\frac{24}{4}=6
$$

$*$
$*$

In general, the number of ways to put k identical objects into n distinct boxes is

$$
\binom{n}{k}==\frac{n!}{(n-k)!k!}
$$

This is the binomial coeff cient, or " n choose k."

For a nice introduction, see the f rst chapter of Victor Bryant: Aspects of Combinatorics (1993)

When applied to a binomial coeff cient, Stirling's approximation gives

$$
\ln \binom{n}{k}==n H_{2}\left(\frac{k}{n}\right)
$$

H_{2} is here the binary entropy function measured in nats (natural units, 1.44 bits).

The error grows slower than a linearly.

137846528820

$$
\log \frac{}{1099511627776}==25.649-27.726
$$

PLAN

- Some combinatorical preliminaries
- Turing machines
- Kolmogorov complexity
- The universality of Kolmogorov complexity
- The equivalence of Kolmogorov complexity and coin flipping entropy
- Monkeys with typewriters

Shortest description?

001001001001.

1100111100111111001111111100 . 01011011101111011111.
0100011011000001010011100101110111.
10110001011100100001011111101.

The Kolmogorov Complexity of a f nite string is the length of the shortest program which will print that string.

$$
001001001001 .
$$

$$
1100111100111111001111111100 .
$$

$$
01011011101111011111 .
$$

$$
0100011011000001010011100101110111 .
$$

$$
101100010111001000010111111101 .
$$

The Turing Machine

S_{i}	IF 0	IF 1	IF BLANK	S_{i+1}
S_{0}	R	R	HALT	S_{1}
S_{1}	$W 1, R$	WO, R	HALT	S_{0}

Theorem:

There are universal machines.

MACHINE("MACHINE")

Sproof:

Consequence:

The Kolmogorov complexity of a string on two different universal machines differs only by the length of the longest simulation program:

$$
K_{M_{1}}(x)-K_{M_{2}}(x)==c\left(M_{1}, M_{2}\right)
$$

(And constants are sublinear.)

The Kolmogorov Complexity of a f nite string is the length of the shortest program which will print that string.

$$
\begin{aligned}
& 001001001001001001 \ldots 001001001 . \\
& 11001111001111110011111111 \ldots 00 . \\
& 01011011101111011111 \ldots 11111111 . \\
& 010001101100000101001110010 \ldots 1 . \\
& 10110001011100100001011111 \ldots 01 .
\end{aligned}
$$

Theorem:

Most strings don't have any structure.

Proof:

There are 2^{n} strings of length n, and

$$
1+2+4+8+16+\ldots+2^{n-1}
$$

programs of length < n.

PrintString (n, k, i) construct all string of length n select the ones containing k is print the i th of those strings.

$$
\begin{aligned}
& 0011 \\
& 0101 \\
& 1001 \\
& 0110 \\
& 1010<\text { THIS ONE! } \\
& 1100
\end{aligned}
$$

$$
\begin{aligned}
& n=10, \quad k=3, \quad i=13 . \\
& \text { - } \\
& \overbrace{1}^{12} \\
& 1010,11 \text {, } 1101
\end{aligned}
$$

110011000111110111110011

$$
\begin{aligned}
& n=10, \quad k=3, \quad i=13 . \\
& \rightarrow \\
& \overbrace{-}^{i=13} \\
& 1010,11,1101
\end{aligned}
$$

$$
\begin{aligned}
& 110011000111110111110011 \\
& 8+2+4+2+8
\end{aligned}
$$

Stirling's approximation for a binomial coeff cient is

$$
\ln \binom{n}{k}==n H_{2}\left(\frac{k}{n}\right)
$$

H_{2} is here the binary entropy function measured in nats (natural units, 1.44 bits).

The error grows slower than a linearly.

So

$$
K(x) \quad 2 n H_{2}\left(\frac{k}{n}\right) \pm(n)
$$

where is sublinear.

For coin f ipping sequences, Kolmogorov complexity is equal to Shannon entropy, plus or minus a sublinear term.

For other sequences, Kolmogorov complexity is smaller than the Shannon entropy of the string if modeled as as a coin f ipping sequence.

Conclusion: Coin f ipping is the worst.

Random monkey

Universal machine

Finite string (or nothing)

Ray J. Solomonoff: "A formal theory of inductive inference," Information and control, 1964.

Again, it doesn't matter which universal machine you use.

The universal probability of a string x is close to $2^{-K(x)}$.

For long strings, f nding the probability of the shortest description is thus as good as summing up the probability of all descriptions.

