## ILLC Project Course in Information Theory

#### Crash course

13 January – 17 January 2014 12:00 to 14:00

### **Student presentations**

27 January – 31 January 2014 12:00 to 14:00

#### Location

ILLC, room F1.15, Science Park 107, Amsterdam

#### **Materials**

informationtheory.weebly.com

#### **Contact**

Mathias Winther Madsen mathias.winther@gmail.com

### **Monday**

Probability theory Uncertainty and coding

#### **Tuesday**

The weak law of large numbers
The source coding theorem

#### Wednesday

Random processes Arithmetic coding

#### **Thursday**

Divergence Kelly Gambling

### **Friday**

Kolmogorov Complexity
The limits of statistics

## **PLAN**

- Some combinatorical preliminaries
- Turing machines
- Kolmogorov complexity
- The universality of Kolmogorov complexity
- The equivalence of Kolmogorov complexity and coin flipping entropy
- Monkeys with typewriters

## **PLAN**

- Some combinatorical preliminaries:
  - Factorials
  - Stirling's approximation
  - Binomial coefficients
  - The binary entropy approximation

There are  $3 \cdot 2 \cdot 1$  ways to sort three letters:

ABC, ACB, BAC, BCA, CAB, CBA

### Notation:

$$n! == 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$$

or "n factorial."

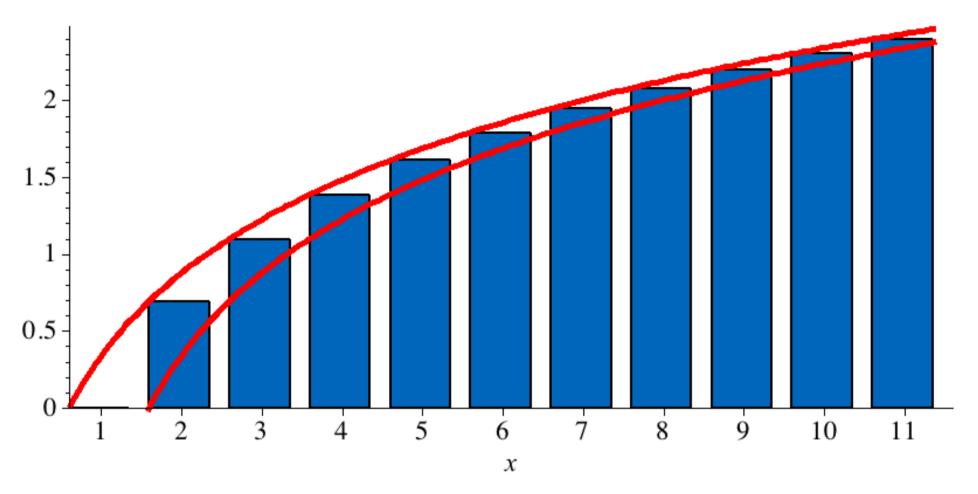
The natural logarithm of a factorial can be approximated by Stirling's approximation,

$$ln(n!) == n ln n - n$$

The error of this approximation grows slower than linearly.

| n       | 10   | 20   | 30   | 40    | 50    |
|---------|------|------|------|-------|-------|
| ln(n!)  | 15.1 | 42.3 | 74.6 | 110.3 | 148.5 |
| Stir(n) | 13.0 | 40.0 | 72.0 | 107.6 | 145.6 |

## Sproof:



The anti-derivative of ln(x) is x ln(x) - x.

William Feller: An Introduction to Probability Theory and its Applications (1950)

There are

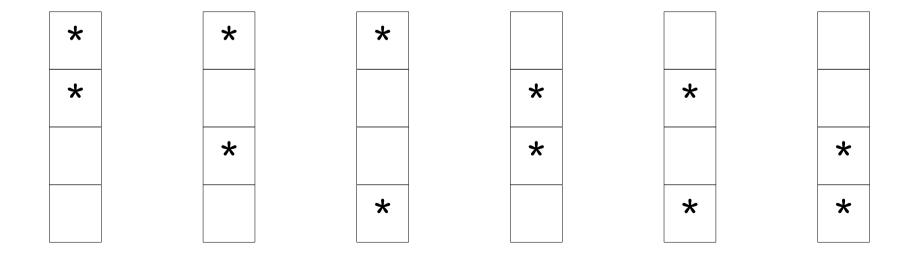
$$4 \cdot 3 == \frac{4!}{2!} == \frac{24}{2} == 12$$

ways to put two objects into four boxes:

| 1 | 2 | 1 | 2 | 1 | 2 |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |   |   |   |   | 1 | 2 | 1 | 2 |   |   |
|   |   | 2 | 1 |   |   | 2 | 1 |   |   | 1 | 2 |
|   |   |   |   | 2 | 1 |   |   | 2 | 1 | 2 | 1 |

If the objects are identical, the number of options is a factor of 2! smaller:

$$\frac{4!}{2! \ 2!} == \frac{24}{4} == 6$$



In general, the number of ways to put *k* identical objects into *n* distinct boxes is

$$\begin{pmatrix} n \\ k \end{pmatrix} == \frac{n!}{(n-k)! \ k!}$$

This is the **binomial coeff cient**, or "n choose k."

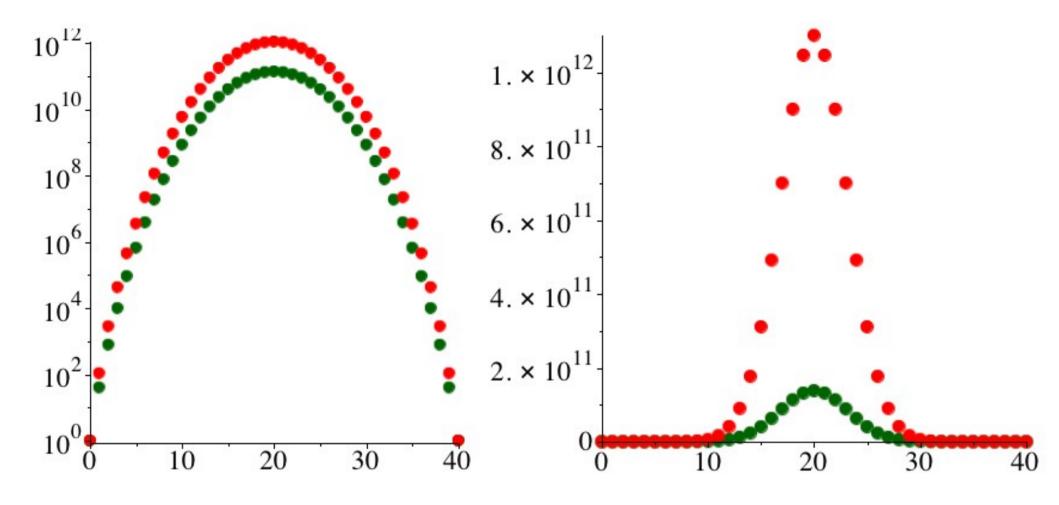
For a nice introduction, see the f rst chapter of Victor Bryant: *Aspects of Combinatorics* (1993)

When applied to a binomial coeff cient, Stirling's approximation gives

$$\ln \binom{n}{k} = n H_2 \left(\frac{k}{n}\right)$$

 $H_2$  is here the binary entropy function **measured in nats** (natural units, 1.44 bits).

The error grows slower than a linearly.



Example: n = 40, k = 20

## **PLAN**

- Some combinatorical preliminaries
- Turing machines
- Kolmogorov complexity
- The universality of Kolmogorov complexity
- The equivalence of Kolmogorov complexity and coin flipping entropy
- Monkeys with typewriters

### Shortest description?

001001001001.

110011110011111110011111111100.

01011011101111011111.

0100011011000001010011100101110111.

1011000101110010000101111111101.

The **Kolmogorov Complexity** of a f nite string is the length of the shortest program which will print that string.

001001001001.

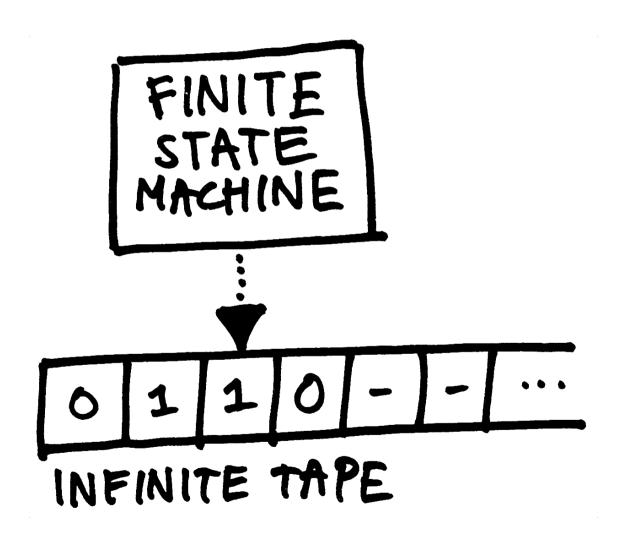
110011110011111110011111111100.

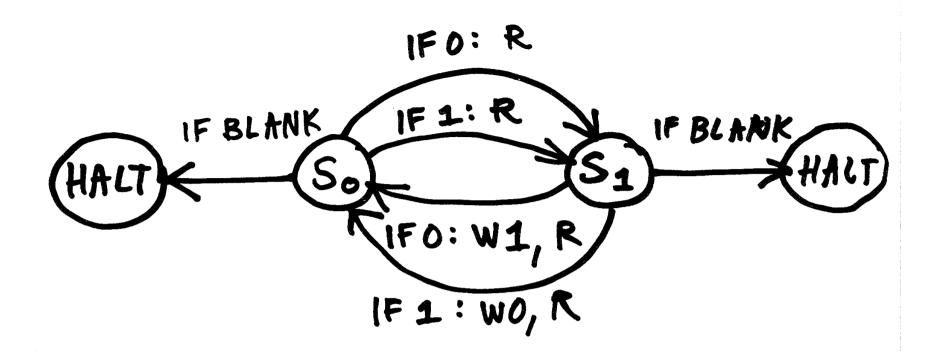
01011011101111011111.

0100011011000001010011100101110111.

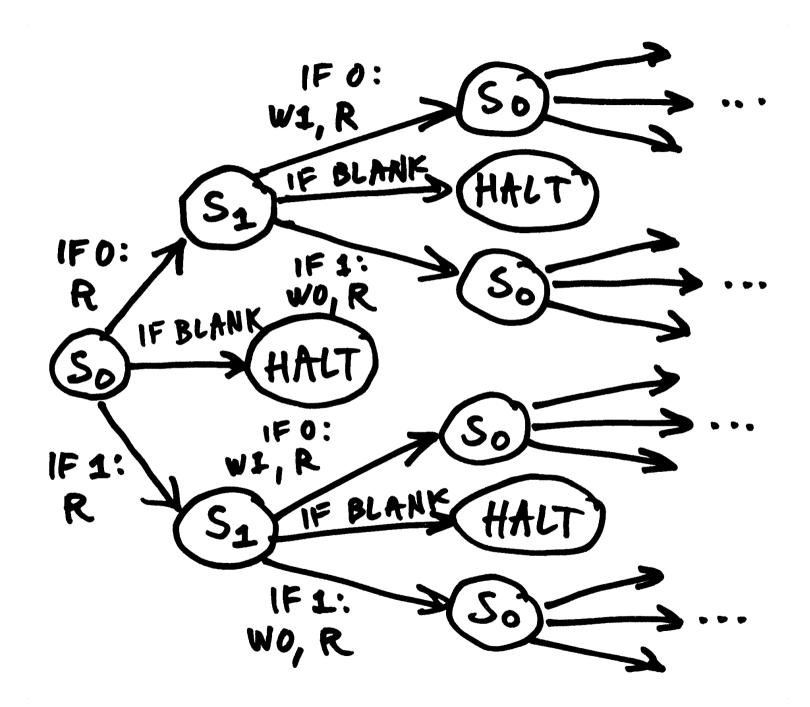
1011000101110010000101111111101.

## The Turing Machine





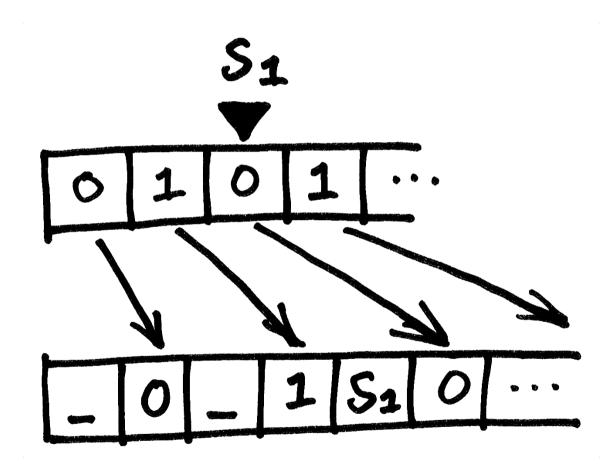
| Si |       | IF 1  |      |    |
|----|-------|-------|------|----|
| So | R     | R     | HALT | 51 |
| 51 | W1, R | WO, R | HALT | So |



### Theorem:

There are universal machines.

# Sproof:



## Consequence:

The Kolmogorov complexity of a string on two different universal machines differs only by the length of the longest simulation program:

$$K_{M_1}(x) - K_{M_2}(x) == c(M_1, M_2)$$

(And constants are sublinear.)

The Kolmogorov Complexity of a f nite string is the length of the shortest program which will print that string.

### Theorem:

Most strings don't have any structure.

### **Proof:**

There are  $2^n$  strings of length n, and

$$1 + 2 + 4 + 8 + 16 + \dots + 2^{n-1}$$

programs of length < n.

PrintString(n, k, i):

construct all string of length n select the ones containing k 1s print the ith of those strings.

$$n = 10,$$
  $k = 3,$   $i = 13.$ 

1 0 1 0 , 1 1 , 1 1 0 1

1 00 11 00 01 11 11 01 11 11 00 11

8 + 2 + 4 + 2 + 8

Stirling's approximation for a binomial coeff cient is

$$\ln \binom{n}{k} == n H_2 \left(\frac{k}{n}\right)$$

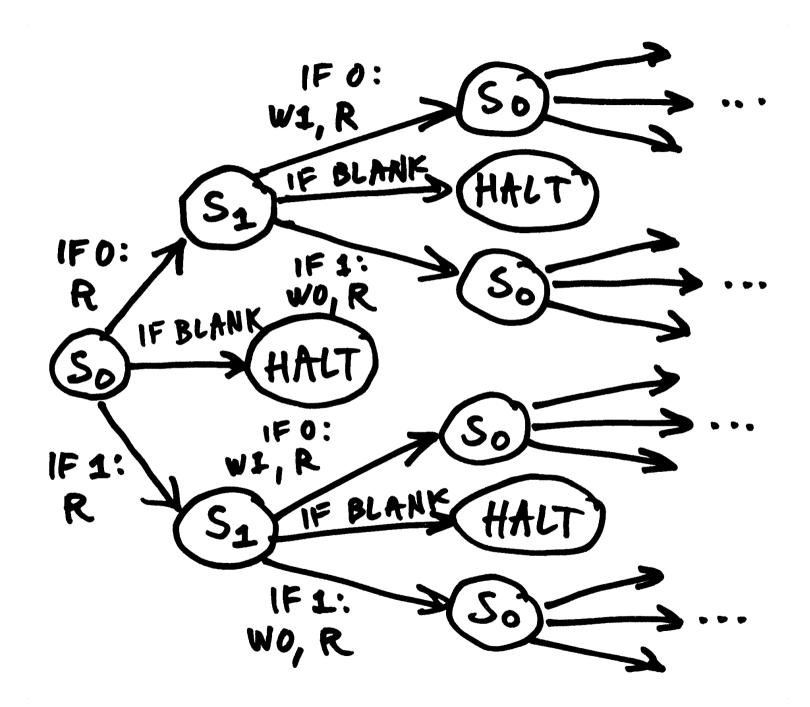
 $H_2$  is here the binary entropy function **measured in nats** (natural units, 1.44 bits).

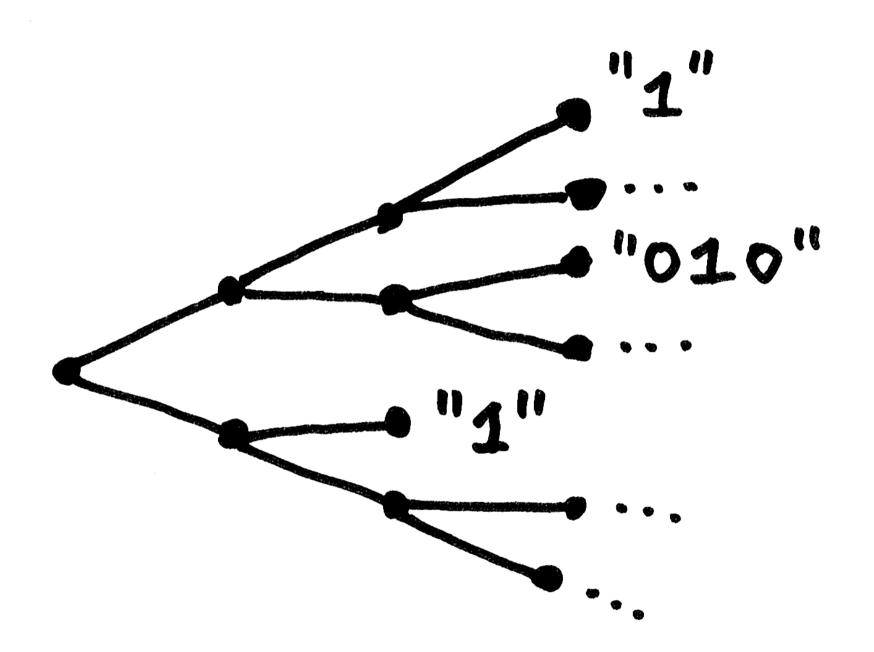
The error grows slower than a linearly.

So

$$K(x)$$
  $2n H_2\left(\frac{k}{n}\right) \pm (n)$ 

where is sublinear.

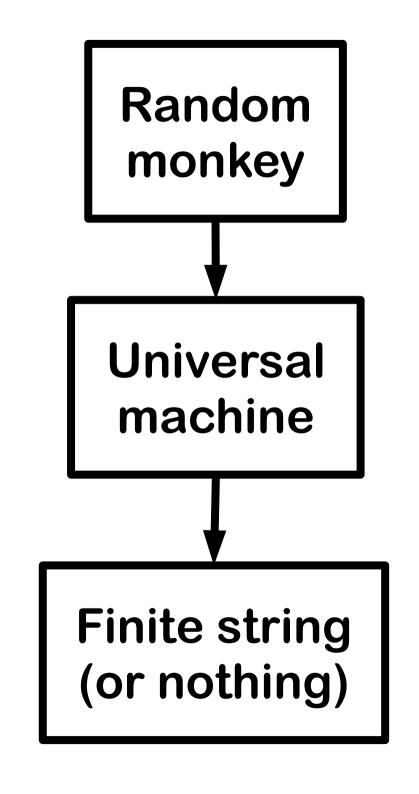


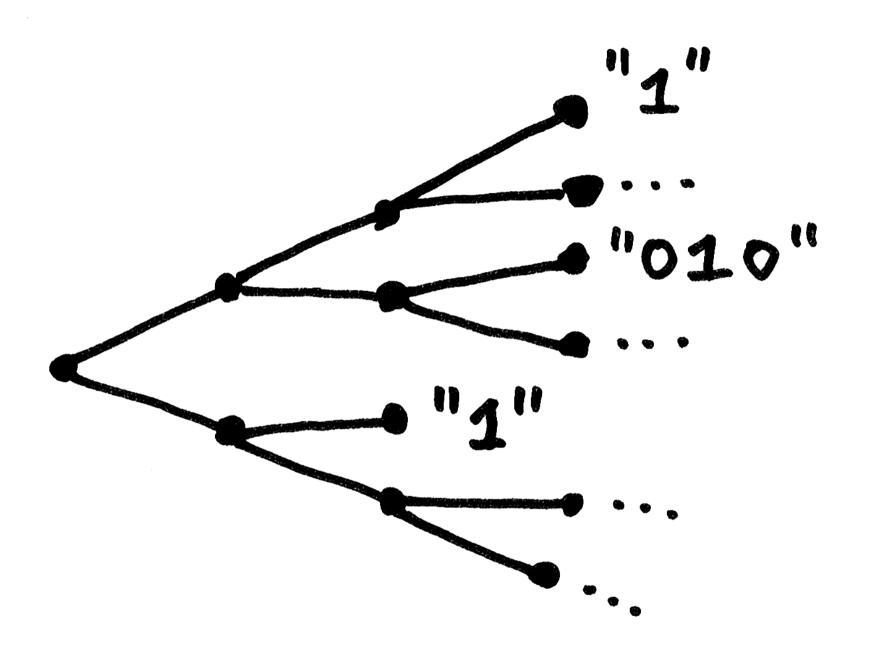


For coin f ipping sequences, Kolmogorov complexity is equal to Shannon entropy, plus or minus a sublinear term.

For other sequences, Kolmogorov complexity is smaller than the Shannon entropy of the string **if modeled as as a coin f ipping sequence**.

Conclusion: Coin f ipping is the worst.





Ray J. Solomonoff: "A formal theory of inductive inference," *Information and control*, 1964.

Again, it doesn't matter which universal machine you use.

The universal probability of a string x is close to  $2^{-K(x)}$ .

For long strings, f nding the probability of the shortest description is thus as good as summing up the probability of all descriptions.