ILLC Project Course in Information Theory

Crash course
13 January - 17 January 2014
12:00 to 14:00
Student presentations
27 January - 31 January 2014
12:00 to 14:00

Location

ILLC, room F1.15,
Science Park 107, Amsterdam

Materials

informationtheory.weebly.com

Contact

Mathias Winther Madsen
mathias.winther@gmail.com

Monday

Probability theory
Uncertainty and coding
Tuesday
The weak law of large numbers
The source coding theorem

Wednesday

Random processes Arithmetic coding

Thursday

Divergence
Kelly Gambling

Friday

Kolmogorov Complexity
The limits of statistics

Horse race

Horse number	1	2	3	4
Win probability	.4	.3	.2	.1
Odds	2	3	5	10

		Winner			
			1	2	3

Horse race

Horse number	1	2	3	4
Win probability	.4	.3	.2	.1
Odds	2	3	5	10

Payoffs $R(b)=.4 \cdot 2 b+.3 \cdot 3 b+.2 \cdot 5 b+.1 \cdot 10 b$

$$
==p_{1} o_{1} b_{1}+p_{2} o_{2} b_{2}+\ldots+p_{n} o_{n} b_{n}
$$

Degenerate Gambling

Degenerate Gambling

Capital

Degenerate Gambling

Rate of return:

Degenerate Gambling

Rate of return:

Optimal reinvestment

Daniel Bernoulli (1700-1782)

John Larry Kelly, Jr. (1923-1965)

Optimal reinvestment

The doubling rate:

$$
W==\log R==\log \frac{\text { Capital at time } i+1}{\text { Capital at time } i}
$$

$$
\text { So } 2^{W}=R \text {. }
$$

Long-run behaviour?

Optimal reinvestment

The doubling rate:

$$
W==\log R==\quad i p_{i} \log \left(b_{i} o_{i}\right)
$$

$$
\text { So } W=\quad \quad i p_{i} \log \left(o_{i}\right)-\quad i p_{i} \log \left(\frac{1}{b_{i}}\right)
$$

So that...?

Optimal reinvestment

Geometric expectation

$E[W]=\mathbf{p} \log$ bo
is maximized by propor-tional gambling ($\mathbf{b}^{*}=\mathbf{p}$).

Arithmetic expectation

$$
E[R]=\mathbf{p b o}
$$

is maximized by degenerate gambling

Optimal reinvestment

Horse race

Horse number	1	2	3	4
Win probability	.4	.3	.2	.1
Odds	2	3	5	10

Payoffs

$$
\begin{aligned}
W(b)== & .4 \log (2 b)+.3 \log (3 b)+ \\
& .2 \log (5 b)+.1 \log (10 b)
\end{aligned}
$$

Horse

 race| Horse number | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: |
| Win probability | .4 | .3 | .2 | .1 |
| Odds | 2 | 3 | 5 | 10 |

Payoffs

$$
\begin{aligned}
W\left(b^{*}\right)== & .4 \log (2 \cdot .4)+.3 \log (3 \cdot .3)+ \\
& .2 \log (5 \cdot .2)+.1 \log (10 \cdot .1)
\end{aligned}
$$

Arithmetic mean

$$
\frac{1}{n}\left(X_{1}+X_{2}+X_{3}+\ldots+X_{n}\right)
$$

Geometric mean

$$
\left(X_{1} \cdot X_{2} \cdot X_{3} \cdots X_{n}\right)^{1 / n}
$$

For example,

$$
\begin{gathered}
(1 / 2)(2+8)=5 \\
(2 \cdot 8)^{1 / 2}=4
\end{gathered}
$$

The geometric mean

$$
\begin{gathered}
\left(X_{1} \cdot X_{2} \cdot X_{3} \cdot \cdots X_{n}\right)^{1 / n} \\
\text { is also equal to }
\end{gathered}
$$

$$
\left(2^{\log X_{1}+\log X_{2}+\log X_{3}+\ldots+\log X_{n}}\right)^{1 / n}
$$

which is equal to
$\left(2^{1 / n\left(\log X_{1}+\log X_{2}+\log X_{3}+\ldots+\log X_{n}\right)}\right)$
so for an ergodic process $X \ldots$

