Exercises for Thursday, first hour

Mathias Winther Madsen
mathias.winther@gmail.com

January 16, 2014

Variational approximation Two random variables X and Y interact according to the joint probability table on the right. We will call this probability distribution P and ap-

$P(X, Y)$	$X=1$	$X=2$
$Y=1$	0	$1 / 2$
$Y=2$	$1 / 4$	$1 / 4$

1. Which distribution over independent X and Y minimizes $D(Q \| P)$?
2. Which distribution over independent X and Y minimizes $D(P \| Q)$?

Competitive prediction Two scientists compete about assigning good probability estimates two the outcomes of a random process. One scientist believes that the process is a series of coin flips with bias $\theta=.6$, and the other believes that it is a series of coin flips with bias $\theta=.2$. The process is in fact a coin flipping process, but the coin actually has a bias of $\theta=.5$.

We measure the relative performance of the two scientists by looking at the likelihood ratio between their respective probability estimates,

$$
\frac{\operatorname{Pr}\left(x_{1}, x_{2}, \ldots x_{k} \mid \theta=.6\right)}{\operatorname{Pr}\left(x_{1}, x_{2}, \ldots x_{k} \mid \theta=.2\right)}
$$

We consider one scientists as substantially better than the other if this likelihood ratio exceeds 20 or drops below $1 / 20$.

Roughly how many coin flips should it take before this happens?
A substitution cipher Crack the following substitution cipher:

> GWAL VLITG IEW -- HLCLT ARHO UWF MWHE NTLBRGLMV -- UICRHE MRDDML WT HW AWHLV RH AV NYTGL, IHO HWDURHE NITDRBYMIT DW RHDLTLGD AL WH GUWTL, R DUWYEUD R FWYMO GIRM IPWYD I MRDDML IHO GLL DUL FIDLTV NITD WS DUL FWTMO. RD RG I FIV R UICL WS OTRCRHE WSS DUL GNMLLH IHO TLEYMIDRHE DUL BRTBYMIDRWH.

Spaces and punctuation have been left unencrypted to make things easier. The underlying plaintext string is in capitalized English.

