ILLC Project Course in Information Theory

Crash course

13 January – 17 January 2014 12:00 to 14:00

Student presentations

27 January – 31 January 2014 12:00 to 14:00

Location

ILLC, room F1.15, Science Park 107, Amsterdam

Materials

informationtheory.weebly.com

Contact

Mathias Winther Madsen mathias.winther@gmail.com

Monday

Probability theory Uncertainty and coding

Tuesday

The weak law of large numbers The source coding theorem

Wednesday

Random processes Arithmetic coding

Thursday

Divergence Kelly Gambling

Friday

Kolmogorov Complexity The limits of statistics

E.g.,

0.7 ↓ ▼ [0, 1, 0, 1, 1, 1, 0, 1]

Harold Jeffreys, Edwin Jaynes, Dennis Lindley, and others.

Ronald Fisher, John Maynard Keynes, Karl Popper, and others.

Laplace:

Pierre-Simon Laplace: *Essai philosophique sur les probabilités* (1814)

Laplace:

Pierre-Simon Laplace: Essai philosophique sur les probabilités (1814)

The German tank problem

I have a sequence of natural numbers: 1, 2, 3, ..., *n*.

The number 17 is on my list.

What is *n*?

(A simplified version of) The James-Stein paradox

A random variable follows a normal distribution with an unknown mean.

You get the single data point X = 17.

What is the mean of the distribution?

Bias²[t;] ==
$$(E[t] -)^2$$

VAR[t] == $E[(t - E[t])^2]$
MSE[t;] == $E[(t -)^2]$

The bias-variance tradeoff: $MSE[t;] == Bias^{2}[t;] + VAR[t]$

So what (the hell) is statistics?