ILLC Project Course in Information Theory

Crash course
13 January - 17 January 2014
12:00 to 14:00
Student presentations
27 January - 31 January 2014
12:00 to 14:00

Location

ILLC, room F1.15,
Science Park 107, Amsterdam

Materials

informationtheory.weebly.com

Contact

Mathias Winther Madsen
mathias.winther@gmail.com

Monday

Probability theory
Uncertainty and coding
Tuesday
The weak law of large numbers
The source coding theorem

Wednesday

Random processes Arithmetic coding

Thursday

Divergence
Kelly Gambling

Friday

Kolmogorov Complexity
The limits of statistics

The surprisal associated with an event A is

$$
s(A)=\log \frac{1}{\operatorname{Pr}(\mathrm{~A})}
$$

Surprisal $=$ ideal codeword length.
Entropy $=$ expected surprisal.

x	1	2	3	4
$\operatorname{Pr}(X=x)$	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 8$
$-\log \operatorname{Pr}(X=x)$	1	2	3	3

You have a bent coin with bias $=1 / 3$ which you f ip a large number of times, keeping track of your average surprisal so far.

What is the limit of your average surprisal?
Just before the experiment starts, however, I secretly secretly replace your coin by a different one with bias $=2 / 3$.

What is the average of your surprisal values actually going to converge to?

How much higher is this average than what you could have achieved with better probability estimates?

Entropy of a probabilistic situation P :

$$
H(P)=\mathrm{E}_{P}[-\log P(x)]
$$

Average surprisal for model Q under P :

$$
R(P \| Q)=\mathrm{E}_{P}[-\log Q(x)]
$$

$$
\begin{gathered}
\text { Divergence of } Q \text { from } P: \\
D(P \| Q)=\mathrm{E}_{P}[-\log Q(x)]-H(P)
\end{gathered}
$$

Solomon Kullback and Richard A. Leibler: "On information and suff ciency," Annals of Mathematical Statistics, 1951.

Example:

$$
\begin{aligned}
& D(P \| Q)==? \\
& D(Q \| P)==?
\end{aligned}
$$

Example:

$$
\begin{aligned}
& D(P \| Q)==1 \\
& D(Q \| P)==
\end{aligned}
$$

Character	a^{\prime}		C^{\prime}
Wrong probability	1/2	1/4	1/4
Bad codeword	'0'	'10'	11 '
Actual probability	1/4	1/2	1/4
Good codeword	'00'	'1'	'01'

$\begin{array}{lllllllll}\text { Input stream } & \text { b } & \text { b } & \text { a } & \text { b } & \text { c } & \text { b } & \ldots\end{array}$
Bad encoding
10
o
$101110 \ldots$
Good encoding
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
011

$R(P \| Q) \quad H(P)$,

and thus
$D(P \| Q) \quad 0$.

In fact, $D(P \| Q)=0$ only if $P=Q$.

This follows from Jensen's inequality.
(http://en.wikipedia.org/wiki/
Jensen\%27s_inequality)

Example: Divergence from (1/2, 1/4, 1/4).

From (1/2, 1/2)
From (1/5, 4/5)

Likelihood ratios

$$
D(P \| T)-D(P \| U)=\mathrm{E}_{P}\left(\log \frac{U(x)}{T(x)}\right)
$$

Likelihood ratios

$$
D(P \| T)-D(P \| U)=\mathrm{E}_{P}\left(\log \frac{U(x)}{T(x)}\right)
$$

$$
\begin{aligned}
& .62 \bigotimes_{1}^{\ll} \ll \\
& \left(\begin{array}{ll}
.62 & 1 \\
.38 & 0
\end{array}\right)
\end{aligned}
$$

ALICE WAS BEGINNING TO GET VERY TIRED OF SITTING BY HER SISTER ON THE BANK, AND OF HAVING NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO THE BOOK HER SISTER WAS READING, BUT IT HAD NO PICTURES OR CONVERSATIONS IN IT, 'AND WHAT IS THE USE OF A BOOK,' THOUGHT ALICE 'WITHOUT PICTURES OR CONVERSATION?'

ALICE WAS BEGINNING TO GET VERY TIRED OF SITTING BY HER SISTER ON THE BANK, AND OF HAVING NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO THE BOOK HER SISTER WAS READING, BUT IT HAD NO PICTURES OR CONVERSATIONS IN IT, 'AND WHAT IS THE USE OF A BOOK,' THOUGHT ALICE 'WITHOUT PICTURES OR CONVERSATION?'

Plaintext letter: A B C D E F G H ...

Cryptocharacter: C T H A O E L R ...

ALICE WAS BEGINNING TO GET VERY TIRED OF SITTING BY HER SISTER ON THE BANK, AND OF HAVING NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO THE BOOK HER SISTER WAS READING, BUT IT HAD NO PICTURES OR CONVERSATIONS IN IT, 'AND WHAT IS THE USE OF A BOOK,' THOUGHT ALICE 'WITHOUT PICTURES OR CONVERSATION?'

CYDHOR CURTOLD??D?LR,VRLO, R:OFGR, DFOARVE RUD, , D?LRTGRWOFRUDU, OFRV?R,WORTC?B'RC?AR VERWC:D?LR?V,WD?LR, VRAVNRV?HORVFR, DHORU WORWCARKOOKOARD?, VR, WORTVVBRWOFRUDU, OFR CURFOCAD?L'RTS, RD, RWCAR?VRKDH, SFOURVFRH V?: OFUC, DV?URD?RD, 'RPC?AR WC, RDUR, WORSUOR VERCRTVVB'PR,WVSLW, RCYDHORP D,WVS, RKDH, S FOURVFRHV?:OFUC, DV?IP

ETAOIHNSRDLU WG, CYFPBKV: ?

Homophonic cipher (one-to-many cipher)

for each letter in your file:
if no codeword exists:
choose one
else:
either come up with a new one, or reuse an old one, depending on how often
you have already used the other cipher symbols.

$$
\begin{aligned}
& .62 \bigotimes_{1}^{\ll} \ll \\
& \left(\begin{array}{ll}
.62 & 1 \\
.38 & 0
\end{array}\right)
\end{aligned}
$$

 MJYへUIXAOT」NOYDOO
 तヘLMZJOя\9FHVW3ムy

RN」IYE」OAOGBTQSEB LO／PEBロXDEHMUへRRX

MJYへUIXAOT」NOYDOO x 1 LMZJOя\9FHVW3ムy RN」エYEJOAOGBTQSEB LO／PEBロXDEHMUへRRX

I L I K E K I L L I G P E O P L E B E C A U S E I T I S S O M U C H F U N I T I S M O R E F U N T H A N K I L L I N G W I L D G A M E I N T H E F O．．．

MJYへUIXAOT」NOYDOO त्रへLMZJOЯ\9FHVW3ムy RN」IYEJOAOGBTQSEB LO／PEBロXDEHMUARRX

Sujith Ravi and Kevin Knight：＂Bayesian Inference for Zodiac and Other Homophonic Ciphers，＂Proceedings of the conference of the Association for Computational Linguistics， 2011.
（aclweb．org／anthology／P／P11／P11－1025．pdf）

Encryption with relatively small sets of possible encryption schemes

$D(P \| T)-D(P \| U)=\mathrm{E}_{P}\left(\log \frac{U(x)}{T(x)}\right)$

Can we use our sophisticated statistical knowledge of English to crack the cipher, or did the encoder capture all statistical structure there is to describe?

